EFFECT OF PRESSURE ON CYCLIC REACTIONS

The cyclization of 4-chlorobutanol in water was found by Heine *et al.*¹³ to have a rate constant of $2 \cdot 87 \times 10^{-4} \sec^{-1}$ at $70 \cdot 5^{\circ}$. More recent measurements¹⁴ at $50 \cdot 3^{\circ}$ have shown a rate constant of $3 \cdot 60 \times 10^{-5} \sec^{-1}$ in good agreement with our measurements at atmospheric pressure. Our values of ΔH^* and ΔS^* are in agreement with the earlier measurements.¹³ The values of ΔV^* in Table 2 show that the acceleration by pressure is comparatively small and decreases with increasing pressure. The acceleration is greater in 50% by volume acetone/water and is much greater again in methanol.

The neutral hydrolyses of methyl bromide, ethyl bromide, and n-butylchloride in water are closely analogous to the cyclization reaction of CBL. The absolute rate constant for the reaction of methyl bromide was not determined because the initial concentration of methyl bromide was not known accurately. The relative values given in Table 1 should however be accurate as they were found by using the same solution at different pressures. Our rate constant for the hydrolysis of ethyl bromide is in good agreement with the results of Robertson *et al.*¹⁵ The value of ΔV^* for the methyl bromide and ethyl bromide hydrolyses are very similar to the value of -14ml/mole which can be derived from the measurements of these reactions by Strauss¹⁶ in 80% by volume ethanol/water.

The rate constant found for the hydrolysis of benzyl chloride in 50% by volume acetone/water at 1 atm agrees with the value of $2 \cdot 2 \times 10^{-7}$ sec⁻¹ extrapolated from the measurements of Bensley and Kohnstam¹⁷ at higher temperatures. This reaction has recently been studied at several pressures in aqueous ethanol¹⁸ containing up to 0.4 mole fraction ethanol. The volume of activation was found to vary between -17 and -23 ml/mole with change of solvent composition with a maximum at 0.3 mole fraction. The solvent used in our measurements contained 0.20 mole fraction of organic component (acetone) and ΔV^* was found to be the same as that found in aqueous ethanol of the same composition.¹⁸ Although the reaction is classed as an $S_{\rm N}^2$ reaction,¹⁹ it has some characteristics in common with $S_{\rm N}^1$ reactions and an unusually polar transition state has been postulated for it.¹⁷ This is supported by the volume of activation which is comparable with that of the $S_{\rm N}^1$ hydrolysis of t-butyl chloride in the same solvent.

The rate constants for the hydrolysis of t-butyl chloride in 50% and in 92% by volume acetone/water (0.20 and 0.74 mole fraction respectively) at atmospheric pressure agree with the values found by Winstein and Fainberg²⁰ at the lower concentration of acetone, and, by making a slight extrapolation, with those of Tommila *et al.*²¹ at the higher concentration of acetone. The effect of pressure on this reaction

- ¹³ Heine, R. W., Miller, A. D., Barton, W. H., and Greiner, R. W., J. Am. chem. Soc., 1953, 75, 4778.
- ¹⁴ Swain, C. G., Kuhn, D. A., and Schowen, R. L., J. Am. chem. Soc., 1965, 87, 1553.
- ¹⁵ Robertson, R. E., Heppolette, J., and Scott, R., Can. J. Chem., 1959, 37, 803.
- ¹⁶ Strauss, W., Aust. J. Chem., 1957, 10, 381.
- ¹⁷ Bensley, B., and Kohnstam, G., J. chem. Soc., 1957, 4747.
- ¹⁸ Hyne, J. B., Golinkin, H. S., and Laidlaw, W. G., J. Am. chem. Soc., 1966, 88, 2104.
- ¹⁹ Kohnstam, G., in "Transition State." Chem. Soc. Special Publ. No. 16. (Chem. Soc.: London 1962.)
- ²⁰ Winstein, S., Fainberg, A. H., and Grunwald, E., J. Am. chem. Soc., 1957, 79, 5937.

²¹ Tommila, E., Tilikainen, M., and Viopo, A., Ann. Acad. Sci. fenn. AII, 1955, No. 65, 1.

A. H. EWALD AND D. J. OTTLEY

TABLE 1

KINETIC MEASUREMENTS AT HIGH PRESSURES

Pressures at which the experiments were conducted are in atmospheres and are printed in

bold numerals

Temp.	Constant		Results at Stated Pressures					
di bi c	(1) Cyclization of 4-Chlorobutanol in Water; [CB], 0.01M							
	P (atm)	1	500	1500	3000			
39.8°	$10^{5}k$, (sec ⁻¹)	1.03	1.15	1.35	1.67			
49.7	10 11 (000)	3.26	3.54	4.54	5.62	THE WE WE		
54.7		5.48	6.15	7.78	9.80			
59.6		9.95	10.7	12.8	16.7			
50	ΔH_{n}^{*} (kcal mole ⁻¹)	22.1	22.3	22.9	23.4			
50	AS* (en)	-13.8	-12	-9	-7			
	(2) Hydrolysis	of n-Butyl Ch	loride in V	Vater: [Bu	nCll _o 0·1m			
	ci de altre de la companya de la comp	1.	1000	2000	3000			
25.0	108k (sec-1)	1.5	1000	2000	2.8			
40.1	10 11 (Sec)	7.8			I I I I I I I I I I I I I I I I I I I			
45.0	1 Miles & and I is the Istant	12.9			25.2			
65.0		96.5	137	167	186			
	(3) Hydrolysis	of Methyl Bron	nide in W	ater; [MeB	Вг]₀ 0.001м			
		1	700	1500	3000			
30.0	$k_{1,n}/k_{2}(+1\%)$	1.00	1.51	1.96	3.03			
	(4) Hvdrolvsis	of Ethyl Bro	mide in W	ater: [EtB	г]. 0.05м			
	(-, -, -, -, -, -, -, -, -, -, -, -, -, -	1	1000	1700	2000	3000		
30.0	$10^{6}k_{\star}$ (sec ⁻¹)	5.85	8.53	10.2	11.1	13.6		
00 0		1		1	II I	10 0		
	(5) Cyclization of Chlo	robutanol in A	cetone/W	ater (50%)	v/v; [CB]	0.05м		
	at which the fighter we have	1	500	1000	1500	2000	3000	
$25 \cdot 09$	$10^{7}k_{1} \; (\text{sec}^{-1})$	3.95	4.63	$5 \cdot 60$	6.55	7.43	9.03	
(6) No	eutral Hydrolysis of Ben	zyl Chloride in	Acetone	Water (509	% v/v); [P]	nCH_Cl]_ 0	•05м	
		1	1000	1500	2500	1 10		
25.1	$10^{7}k_{1} (\text{sec}^{-1})$	2.38	4.90	6.60	10.3			
(7) 7	Noutral Hydrolymia of + B	autul Chlorida	in Acoton	Water (5	0.0//). [Paten 0	0515	
(1) 1	Neutral Hydrolysis of t-L	utyr chioride	III ACCOUNT	e valer (J	0 % (//), [Bu CIJo U	OOM	
95.0	1074 (200-1)	9,97	4/0	1020	1330			
20.0	$10.k_1 (sec^{-1})$	2.31	3.20	4.30	9.1			
(8) Neutral Hydrolysis of t	-Butyl Chlorid	le in Acete	one/Water	(90% w/w)	; [Bu ^t Cl] ₀	0.1м	
		1	1000	1500	2000 .			
50.0	$10^7 k_1 \; (\text{sec}^{-1})$	$5 \cdot 90$	12.6	$15 \cdot 9$	$18 \cdot 9$		LEN LINEL	
	(9) Cyclization	of 4-Chlorobu	tanol in N	fethanol: [CB1. 0.1M	Salar In		
	(0) 09 011000	1	1500	3000	0.010 0 111			
95.0	1084 (200-1)	1.02	1.02	7.75		Color Growth		
40.0	10 k1 (Sec)	17.1	41.1	69.7	W 111 1 1955			
49.7		70		05 1	de la constant			
59.6	ind a second indem over	238			the set of	and backet		
00 0		1	1 (11 11		1 (71) (71)			
	(10) Neutral Methan	olysis of Ethy	I Chloride	in Methan	ol; [EtCI]	0·5M		
1.1.1	The second secon	1	850	mallin Cl., A				
60.0	$10^{8}k_{1} (\text{sec}^{-1})$	2.56	6.11			ALC: NOT		
	(11) Neutral Methanol	ysis of t-Buty	l Chloride	in Methan	ol; [Bu ^t Cl]	0.05м		
		11	500	1500	3000			
25.0	$10^{7}k_{1} \;(\text{sec}^{-1})$	7.3	12.6	22.7	49.5			
50.0	a state of the sta	210	370	805				
	(12) Cyclization of Br	omobutyleater	hol Mono	ether in Al	kaline Met	hanol		
3 1 1 1 1 1	(12) cyclindololi of Di	BBCEL 0.01	[OCH=]	0.05				
		LICE JO OIR	,[00113]0	o çom	1500			
90 1	1051 (200-1)	1 10	450	750	1500			
32.1	$10^{\circ}\kappa_1 \text{ (sec}^{-1})$	1.10	1.1	1.2	1.22	Volution V		